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Stability of synchronous chaos and on-off intermittency in coupled map lattices

Mingzhou Ding* and Weiming Yang†
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In this paper we consider the stability of synchronous chaos in lattices of coupledN-dimensional maps. For
global coupling, we derive explicit conditions for computing the parameter values at which the synchronous
chaotic attractor becomes unstable and bifurcates into asynchronous chaos. In particular, we show that after the
bifurcation one generally observes on-off intermittency, a process in which the entire system evolves nearly
synchronously~but chaotically! for long periods of time, which are interrupted by brief bursts away from
synchrony. For nearest-neighbor coupled systems, however, we show that the stability of the synchronous
chaotic state is a function of the system size. In particular, for large systems, we will not be able to observe
synchronous chaos. We derive a condition relating the local map’s largest Lyapunov exponent to the maximal
system size under which one can still observe synchronous chaos and on-off intermittency. Other issues related
to the characterization of on-off intermittent signals are also discussed.@S1063-651X~97!07210-3#

PACS number~s!: 05.40.1j, 05.45.1b
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I. INTRODUCTION

Consider a coupled map lattice@1#. Assume that there is a
range of parameter values for which this system exhibit
unique attractor of synchronous chaos where every elem
evolves chaotically and is in synchrony with every other
ement. Suppose that, as the parameter is varied past a c
bifurcation point, this synchronous chaos loses stability,
is replaced by an asynchronous chaotic state. It can be sh
that, under rather general conditions, immediately after
bifurcation, the dynamics exhibits on-off intermittency@3–7#
in which long episodes of nearly synchronous evolut
~laminar phase! are interrupted by a certain element or e
ments in the system bursting away from the synchron
state. The bursts become more and more frequent as th
rameter is moved further and further away from the bifur
tion point. Eventually, the system reaches fully develop
heterogeneous chaos where no clearly identifiable epis
of synchronous chaos are seen. According to the termino
of a recent paper@2#, this bifurcation is a spatiotempora
example of a nonhysteretic blowout bifurcation. Blowout b
furcations occur in systems with symmetry, which in o
case is the spatial translational invariance due to ident
elements used at each space site. It is nonhysteretic bec
there are no other attractors in the phase space coexi
with the synchronous chaos attractor. Hysteretic blowout
furcations occur if there are simultaneously more than
attractor in the system. In this case one may observe rid
basins on the side of the parameter axis where the sync
nous state is still stable@8#.

Assume that the local map isN dimensional and is cha
otic in the absence of coupling. In Sec. II we carry ou
stability analysis of synchronous chaos for globally coup
systems of such maps. We show that, when the synchro
chaos becomes unstable, the system exhibits on-off inter
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tency. Section III presents numerical results on the cha
terization of on-off intermittent signals using quantities lik
laminar phase distribution plots and power spectra. In S
VI we consider the stability of synchronous chaos in coup
map lattices where the coupling is nearest neighbor.
point out that, in such systems, we can only expect to
stable synchronous chaos and the accompanying on-of
termittent behavior if the number of coupled maps is sm
Section V concludes this paper.

II. STABILITY OF SYNCHRONOUS CHAOS
IN GLOBALLY COUPLED MAPS

AND ONSET OF ON-OFF INTERMITTENCY

Coupled map lattices, as discrete analogs to coupled
cillators and partial differential equations, have in rece
years become the model of choice for developing intuitio
and concepts in the study of spatiotemporal dynamical s
tems @1,9#. Assuming global~mean field! coupling we ex-
press our model as

xn11~ i !5~12e!f„xn~ i !…1
e

L (
j 51

L

f„xn~ j !…, ~1!

wherex is an N-dimensional column vector,n denotes the
time step, i , j are labels of lattice sites,f~x! is an
N-dimensional nonlinear mapping function,e is the coupling
strength satisfying 0<e,1, and L is the total number of
coupled elements. The localN-dimensional map

xn115f~xn! ~2!

is assumed to be chaotic. From Eqs.~1! and~2! one can see
that xn( i )5xn( j )[xn , i , j 51,2,...,L, is a solution to Eq.
~1!, indicating that fully synchronized chaotic states are p
sible. For this synchronous chaotic state to be observable
correspondingN-dimensional manifold must be attracting o
stable. Below we derive the criterion for the stability of th
4009 © 1997 The American Physical Society
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4010 56MINGZHOU DING AND WEIMING YANG
synchronization manifold. Stability analysis for synchr
nized periodic orbits in coupled map lattices can be found
@10#.

A. The case ofN51

We begin by considering the simplest case where the
cal map is one dimensional. Rewrite Eq.~1! and Eq.~2! as

xn11~ i !5~12e! f „xn~ i !…1
e

L (
j 51

L

f „xn~ j !…, ~3!

and

xn115 f ~xn!. ~4!

The synchronous chaotic attractor withxn( i )5xn( j )[xn
lies along the one-dimensional diagonal in theL-dimen-
sional phase space spanned by the vectorz
m
e

-

U

n

-

5@x(1),x(2),...,x(L)#T. In other words, the synchroniza
tion manifold is the diagonal which is invariant under th
dynamics. The stability of this invariant manifold can b
assessed by computing its Lyapunov exponent spectrum

Differentiating Eq. ~3! and evaluating the derivative
along the synchronization trajectory leads to

dxn11~ i !5~12e! f 8~xn!dxn~ i !1
e

L (
j 51

L

f 8~xn!dxn~ j !.

~5!

This means that the tangent vector dzn
5@dxn(1),dxn(2),...,dxn(L)#T evolves, along the chaotic
trajectory xn(1)5xn(2)5•••5xn(L)5xn with xn11
5 f (xn), according to

dzn115Jndzn , ~6!

where
Jn5 f 8~xn!S 12~L21!e/L e/L e/L ••• e/L

e/L 12~L21!e/L e/L ••• e/L

A A A A A

e/L e/L e/L ••• 12~L21!e/L

D
L3L

5 f 8~xn!J. ~7!

Note that the constant matrixJ is a cyclic matrix and it commutes with the following shift matrixS:

S5S 0 1 0 ••• 0

0 0 1 ••• 0

A A A A A

0 0 0 ••• 1

1 0 0 ••• 0

D
L3L

, ~8!

namely,

JS5SJ.

This implies that these two matrices share the same set of eigenvectors. The eigenvectors forS are known to be

Em5XexpS 2p i
m21

L D ,expS 4p i
m21

L D , . . . ,expS 2Lp i
m21

L D CT

, ~9!
where m51, . . . ,L and T denotes matrix transpose. Fro
these eigenvectors we find thatJ has an eigenvalue of on
and an (L21)-fold degenerate eigenvalue of (12e).

For m51 we getE15(1,1,...,1)T5v1 as a real eigenvec
tor of the constant matrixJ in Eq. ~7! pointing along the
diagonal direction. The corresponding eigenvalue is one.
ing v1 and the definition of Lyapunov exponents@11#, we
obtain
s-

l15 lim
n→`

1

n
lnUS )

m51

n

JmD •v1 /uv1uU
5 lim

n→`

1

n
lnU )

m51

n

f 8~xm!U.
It is not surprising that the value ofl1 , describing the
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56 4011STABILITY OF SYNCHRONOUS CHAOS AND ON-OFF . . .
stretching dynamics within the synchronization manifold,
the same as that of the one-dimensional map. In particu
from the chaos assumption earlier,l1.0.

Note that the constant matrixJ is a symmetric matrix.
This means that the eigenvectors of the eigenvalue (12e)
span the (L21)-dimensional subspace orthogonal to the
agonal ~synchronization manifold! @12#. Choosing an arbi-
trary set of mutually orthonormal vectors from this subspa
v2 , v3 , . . . ,vL , we obtain the remainingL21 Lyapunov
exponents,

l25l35•••5lL5l11 ln~12e!.

We refer to the Lyapunov exponentsl25l35•••5lL as
transversal Lyapunov exponents since they characterize
behavior of infinitesimal vectors transversal to the synch
nization manifold. In other words they determine the line
stability of synchronous chaos. Note that the Lyapunov
ponents found here do not depend on the lattice sizeL. This
is in contrast to the case where the coupling is nearest ne
bor ~see Sec. IV!.

When e is relatively large such that 0,l1,2 ln(12e),
all the transversal Lyapunov exponents are negative, and
synchronous chaos state is stable and is the only obse
system behavior. This result makes intuitive sense si
strongly coupled systems tend to behave in unison.

As the coupling gets weaker, especially whenl1.
2 ln(12e), all the transversal Lyapunov exponents beco
positive and the system undergoes a blowout bifurcat
through which the asynchronous state is born. For a gi
local one-dimensional map, the critical value of coupling

ec512e2l1. ~10!

From this formula it is clear that, the more chaotic the lo
map, the larger the value ofec . This is again an intuitively
reasonable result.

For e slightly less thanec the synchronous chaos is n
longer stable. However, from the assumption that the s
chronization manifold is the unique attractor fore.ec , we
know that points far away from the synchronization manifo
are still attracted to it immediately aftere becomes smalle
than ec . This combination gives rise to the situation th
after the synchronous chaos becomes unstable, the var
that describes the distance between the system state an
synchronization manifold exhibits on-off intermittency. B
low we illustrate this point with a numerical example.

Let f (x)512ax2 be the logistic map. Fora51.9 we
havel150.5490. Consider a globally coupled system ofL
5100 such maps. From Eq.~10! we getec50.4225. Figure
1~a! shows the dynamics fore50.43.ec . The variable plot-
ted at the lattice sitei is xn( i )2 x̄n where the overline indi-
cates the spatial average of the variablex. The absolute
value of this quantity measures the distance between the
tem state and the synchronization manifold. As expected
the 40 units displayed in the figure, we observe synchroni
chaos in which the plotted quantity is uniformly zero. F
e50.41, which is slightly belowec , clearly identified epi-
sodes of synchronized behavior are seen in Fig. 1~b! which is
interspersed with bursts away from the synchronization
tractor, suggesting the occurrence of on-off intermitten
This intermittent dynamics is eventually replaced by fu
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developed asynchronous chaos as the parametere50.385 is
far removed from the critical value, as shown in Fig. 1~c!.

B. The case ofN>1

Now let us assume that the local mapf in Eq. ~1! is
N.1 dimensional. This localN-dimensional map

xn115f~xn! ~11!

admits N Lyapunov exponents denoted byh1>h2>•••
>hN . Herex is anN-dimensional column vector. Let

An5Dxf~xn! ~12!

be the Jacobian matrix of the local map. From the theory
Lyapunov exponents@11#, for a typical initial conditionx1 in
the proper basin of attraction, we can find a set ofN unit
vectorse1 ,e2 , . . . ,eN such that

hi5 lim
n→`

1

n
lnUS )

m51

n

AmD •eiU. ~13!

FIG. 1. The time series,x( i )2 x̄, from 40 of 100 globally
coupled logistic maps. The overbar indicates spatial average.~a! e
50.43.ec50.4225, ~b! e50.41, which is slightly less thanec ,
and~c! e50.385, which is further away from the critical valueec .
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4012 56MINGZHOU DING AND WEIMING YANG
Note that, if we pick anN-dimensional unit vectore at ran-
dom, then a calculation similar to that in the above form
will always yield the largest Lyapunov exponenth1 .

Consider the coupled system Eq.~1!. The phase spac
now is L3N dimensional. Let us form the phase space v
tor as

z5@xT~1!,xT~2!,...,xT~L !#T.

In other words,z is an (L3N)-dimensional column vector
ec
io

in

ic

iz

m

al
a

-

The synchronization manifold, defined byxn( i )5xn( j ), i , j
51,2,...,L, is N dimensional and the dynamics in the man
fold evolves according to Eq.~11!.

Consider an infinitesimal deviation from this manifo
dzn . Then, from Eq.~1! and along a synchronization trajec
tory, we have

dzn115Jndzn , ~14!

where
Jn5S @12~L21!e/L#An ~e/L !An ~e/L !An ••• ~e/L !An

~e/L !An @12~L21!e/L#An ~e/L !An ••• ~e/L !An

A A A A A

~e/L !An ~e/L !An ~e/L !An ••• @12~L21!e/L#An

D ~15!
c
-off

he
the

l-
s-

be-
fold
is an (L3N)3(L3N) matrix.
The spectrum of all the Lyapunov exponents with resp

to the synchronization solution can be evaluated in a fash
similar to that of one dimensional local maps. Consider
vectors of the form

vi
parallel5@ei

T ,ei
T ,...,ei

T#T,

where ei is the same vector as that used in Eq.~13!, we
obtain the Lyapunov exponents describing the dynam
within the synchronization manifold through

l i
parallel5 lim

n→`

1

n
lnUS )

m51

n

JmD •vi
parallelY uvi

paralleluU
~16!

5 lim
n→`

1

n
lnUS )

m51

n

AmD •eiU, ~17!

which, as expected, ishi .
To describe the dynamics transversal to the synchron

tion manifold let us form vectors as

vi
vertical5@a1ei

T ,a2ei
T ,...,aLei

T#T,

where ai ’s are chosen such that@a1 ,a2 ,...,aL# is an
L-dimensional unit vector orthogonal to the vector@1,1,...,1#.
Note that such vectors are eigenvectors of the constant
trix J in Eq. ~7! with eigenvalue (12e). A calculation simi-
lar to that in Eq.~17! gives the distinct set of all transvers
Lyapunov exponents,

l i
vertical5hi1 ln~12e!.

So the largest transversal Lyapunov exponent is

l1
vertical5h11 ln~12e!.

From this we calculate the critical value of couplingec to be

ec512e2h1. ~18!
t
n

g

s

a-

a-

Note the similarity between Eq.~10! and Eq. ~18!. As a
result we conclude that, fore,ec , the synchronous chaoti
state is no longer stable and we observe the onset of on
intermittency.

We now illustrate the above theoretical criterion for t
bifurcation of synchronous chaos with an example where
local map is the (N52)-dimensional He´non map,

xn115yn112axn
2, ~19!

yn115bxn . ~20!

For a51.4 andb50.3 the largest Lyapunov exponent is ca
culated to beh150.4207. Consider a globally coupled sy
tem of L5100 such maps. From Eq.~18! we get ec
50.3434. The variable of interest here is the distance
tween the system state and the synchronization mani
measured by

FIG. 2. The value ofd5 (1/L) ( i 51
L ux( i )2 x̄ u as a function of

time n from L5100 globally coupled He´non maps. Heree50.34 is
slightly less thanec50.3434.
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dn5
1

L (
i 51

L

uxn~ i !2 x̄nu.

Here the overbar denotes the spatial average of the var
inside. Fore.ec , the value ofdn is uniformly zero in the
long run for any initial condition, indicating the presence
synchronized chaotic attractor. Figure 2 shows the on
intermittent time series fore50.338 which is slightly less
thanec .

III. CHARACTERISTICS
OF ON-OFF INTERMITTENT TIME SERIES

The characterization of on-off intermittent time series li
the one shown in Fig. 2 has been extensively studied in
past@3–7#. We will not duplicate these analyses here. Inste
our goal is to point out the mathematical origin that enab
the past analyses and results to be applicable to the pre
spatiotemporal on-off intermittency problem.

A. Theoretical considerations

The on-off intermittent time series, for parameter valu
close to the critical point, spends most of the time in the
state, suggesting that the system state is near the synch
zation manifold. The time series in this case show unive
properties.

To see the reason, consider the case where the local
is one dimensional (L51). Let dn denote the absolute valu
of the projection ofdzn of Eq. ~6! onto any unit vectorv that
is perpendicular to the diagonal,dn5uvTznu. The value ofdn
can be viewed as measuring the distance between the tr
tory and the synchronization manifold and evolves accord
to

dn115u~12e! f 8~xn!udn5hndn , ~21!

wherehn5u(12e) f 8(xn)u.
Clearly, d50 is a fixed point for Eq.~21!, reflecting the

fact that the synchronization manifold is invariant. Accor
ing to @6,7# this d50 fixed point is stable if̂ lnuznu& is nega-
tive where^ & denotes temporal average. This is equivalen
saying thatl11 ln(12e),0, the same stability condition de
rived earlier using Lyapunov exponents. As past work h
shown, it is the linear equation with parametric driving
Eq. ~21! that underlies the observed universal characters
the on-off intermittent time series. This is why we shou
expect the same characteristics for on-off intermittent ti
series found in earlier works to be applicable to the pres
problem.

The case where the local map isN.1 dimensional is not
as simple. To see what to expect here, we again examine
projection ofdzn in Eq. ~14! onto a unit vector of the form

v5@a1eT,a2eT,...,aLeT#T,

wheree is an N-dimensional unit vector picked at rando
and @a1 ,a2 ,...,aL#T is an L-dimensional unit vector or-
thogonal to the diagonal. This vectorv is orthogonal to the
N-dimensional synchronization manifold. Lettingdn denote
the absolute value of the projection, from Eqs.~14! and~15!,
we get
le

f
ff

e
d
s
ent

s
f
ni-

al

ap

ec-
g

-

o

s

of

e
nt

the

dn115u~12e!ynud̂n5hnd̂n , ~22!

where d̂n5 v̂Tdzn , v̂5@a1êT,a2êT,...,aLêT#T, and ynêT

5eTAn . Note thatê is still a unit vector andyn is a multi-
plicative scalar that describes the amount of stretching du
the application ofAn . Althoughdn11 and d̂n represent pro-
jections of the tangent vectorsdzn11 anddzn onto two dif-
ferent directions, both directions are orthogonal to the s
chronization manifold. Thus we can still think of them a
measures of the distance between the trajectory point and
synchronization manifold. In this sense Eq.~22! and Eq.~21!
play a similar role and we may expect the on-off intermitte
time series from coupled (N.1)-dimensional maps to shar
the same universal properties as that from coupled o
dimensional maps.

B. Numerical results

We illustrate the properties of on-off intermittent time s
ries with three quantities: laminar phase distributions, pow
spectra, and mean bursting amplitude as a function of
coupling strengthe.

Supposed is the variable plotted against time. Lett de-
note the threshold value ofd such that ford.t the signal is
considered on and ford,t the signal is considered off. Th
length of the laminar phase, denoted byT, is defined as the
length of the off state. In practice one should chooset in
such a way that whend,t the linear approximation in Eq
~21! or Eq. ~22! is valid.

For a typical chaotic local map, analysis in@7,13# ~see
also @6#!, which is based on a model like Eq.~21! and a
random walk analogy, shows that the distribution of t
laminar phaseT is in the form

P~T!;T23/2e2T/Ts, ~23!

where

Ts;~ec2e!22 ~24!

gives the crossover point from a power law behavior with
exponent23/2 to an exponential behavior.

In Fig. 3~a! we plot the numerically calculated histogra
for the length of the laminar phase for 100 globally coupl
logistic maps. The on-off intermittent time series used her
constructed in the same way as that shown in Fig. 2.
chooset50.01 and collect 1 000 000 distinct laminar phas
for statistics. Two values ofe are considered:e150.415
~plus! and e250.4075 ~triangle!. Recall thatec50.4225 in
this case. The straight line in the figure has a slope of
23/2 and is plotted to guide the eye only. From the figure
can see that the numerical results conform to the theore
prediction in Eq. ~23!. In particular, the crossover from
power law to exponential occurs earlier ase is moved further
away from ec . The quantitative prediction concerning th
behavior is contained in Eq.~24! and is confirmed for the
coupled logistic maps in Fig. 4 whereTs is obtained and
plotted for a number ofe values.

Figure 3~b! shows the numerically calculated histogra
for the on-off intermittent time series in Fig. 2 for 100 glo
bally coupled He´non maps. We uset50.01 and the same se
of parameters as that used for Fig. 2. Again a straight line
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4014 56MINGZHOU DING AND WEIMING YANG
slope23/2 is drawn in the figure to guide the eye. Clear
the same power law and exponential crossover behavio
observed here for coupled (N.1)-dimensional maps.

Figure 5 shows the power spectrum for the globa
coupled logistic maps witha51.9 ande50.41. The two
straight lines in the figure have slopes of21/2 and 22,
respectively. It is predicted in@4# that one should observ
three distinct regions of scaling behavior in the power sp
trum of on-off intermittent time series. For small frequenc
the spectral density should be a constant. For intermed
frequencies the spectral densityS( f ) scales with frequency
f as

S~ f !;~1/f !1/2.

FIG. 3. ~a! Log-log plot of the histogram for the laminar phas
interval distribution for the on-off intermittent time series from 10
coupled logistic maps. The time series used here is constructe
the same way as that used in Fig. 2.~b! Log-log plot of the histo-
gram for the laminar phase interval distribution for the on-off tim
series shown in Fig. 2.
,
is

c-
s
te

For large frequenciesS( f ) should scale withf as

S~ f !;~1/f !2.

In Fig. 5 we see the predicted behavior for the intermedi
and large frequency regions clearly. However, the predic
low frequency behavior is not observed. This could be due
the prohibitively long time series required for the appeara
of such behavior.

Our last numerical result is shown in Fig. 6. Here w
consider the globally coupled logistic maps witha51.9 and
plot the mean bursting amplitude as a function of the para
eter ec2e. Theory in @5# predicts a linear relationship be
tween the two quantities. This is clearly the case from
figure.

in

FIG. 4. Log-log plot of the crossover timeTs @see Eqs.~23! and
~24!# as a function of the parameterec2e.

FIG. 5. Log-log plot of the power spectrum for on-off intermi
tent time series from 100 globally coupled logistic maps.
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IV. NEAREST-NEIGHBOR COUPLING
AND THE STABILITY OF SYNCHRONOUS CHAOS

Consider the following coupled map lattice model whe
the coupling is nearest neighbor:

xn11~ i !5~12e! f „xn~ i !…1
e

2
@ f „xn~ i 21!…1 f „xn~ i 11!…#.

~25!

FIG. 6. Average bursting amplitude for on-off intermittent tim
series from 100 globally coupled logistic maps as a function of
parameterec2e.
o
m

s
a

Here we assume one-dimensional local maps and impose
periodic boundary conditionxn(0)5xn(L). Similar discus-
sions can be carried out for the case of (N.1)-dimensional
local maps.

Like the case of global coupling, from Eq.~25!, we see
that the synchronous chaotic state is invariant under the
namics. We proceed to compute the Lyapunov spectrum
the synchronization attractor.

The Jacobian matrix for Eq.~25! at time n calculated
along the synchronous chaotic trajectoryxn( i )5xn( j )5xn

with xn115 f (xn) is the followingL3L matrix:

Kn5 f 8~xn!

3S ~12e! e/2 0 ••• 0 e/2

e/2 ~12e! e/2 ••• 0 0

A A A A A A

0 0 0 ••• ~12e! e/2

e/2 0 0 ••• e/2 ~12e!

D
5 f 8~xn!K .

The matrixK is also a cyclic matrix and commutes with th
matrixS in Eq. ~8!, i.e.,KS5SK. Hence the eigenvectors fo
the Jacobian matrixK are still in the form of Eq.~9!, namely,

e

Em5XexpS 2p i
m21

L D ,expS 4p i
m21

L D , . . . ,expS 2Lp i
m21

L D CT

, ~26!
e
t-
nous

the

al
wherem51, . . . ,L andT represents matrix transpose.
From these eigenvectors and the definition of Lyapun

exponents@11# we obtain the Lyapunov exponent spectru
for Eq. ~25! as

l15 lim
n→`

1

n
lnU )

m51

n

f 8„Xm~ i !…U,
l25l11 ln@12e1e cos~2p/L !#,

A

lL5H l11 ln~122e! if L even

l11 ln@12e2e cos~2p/L !# if L odd

ordered in a descending fashion.
Unlike the Lyapunov exponents in globally coupled sy

tems, the Lyapunov exponents in the present system
v

-
re

functions of the system sizeL. In particular, for largeL, the
largest transversal Lyapunov exponentl2 is nearly the same
asl1 which by definition is positive. This, coupled with th
natural limitation thate<1, means that a large neares
neighbor coupled system does not have a stable synchro
chaotic attractor. For a given individual map, i.e.,l1 is fixed,
let us calculate the maximum lattice sizeLm under which we
can still observe synchronous chaos. Clearly, the larger
coupling strength, the larger the sizeLm . By letting e51
andl250 we have,

Lm5 intS 2p

cos21@exp~2l1!# D , ~27!

where the function int~ ! gives the largest integer that is equ
to or less than the argument.

To get a concrete idea of the value ofLm , suppose that
the local map is the surjective logistic map,f (x)5122x2.
We know thatl15 ln 2 in this case. From Eq.~27! we get
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Lm56. That is, for a system with more than six neare
neighbor coupled surjective logistic maps, one can no lon
observe stable synchronous chaos.

V. CONCLUSIONS

The main results of this paper are as follows.
~1! For globally coupled map lattices, we derive explic

conditions for calculating the parameter value at which
synchronous chaotic state becomes unstable and bifurc
la

or

.
ys
e
.

-
er

e
tes

into an asynchronous chaotic state.
~2! We show that the on-off intermittent time series, im

mediately after the synchronous chaotic state becomes
stable, has universal characteristics.

~3! For nearest-neighbor coupled systems, we show
the stability of the synchronous chaotic attractor is a funct
of the system size. In particular, we can only expect to
serve synchronous chaos in such systems if the numbe
coupled maps is small.
s.

-
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